Retrieval of minor atmospheric constituents from far-infrared FORUM measurements

Paolo Dardá(1,2), Marco Robotti(1), William Cossel(1,3), Samuele Del Bianco(1), Barbara Maria Drielli(1), Alessio Di Roma(1,3), Tancredi Massucco(1), Luca Pacinotti(1,4), and Jacob Strick(1)

(1) Dipartimento di Fisica Astronomia, Università di Bologna, Bologna, Italy [marco.robotti@unibo.it]; (2) Istituto di Fisica Applicata ‘Caesar’, Consiglio Nazionale delle Ricerche, Firenze, Italy [william.cossel@caesar.ifac.cnr.it]; (3) Istituto di Scienze dell’Atmosfera e del Climate, Consiglio Nazionale delle Ricerche, Bologna, Italy [barbara.drielli@unibo.it]; (4) Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Firenze, Italy [lsu.pacinotti@ifac.cnr.it]

Background

FORUM (Far-Infrared Outgoing Radiation Understanding and Monitoring) is a proposed experiment for the ESA Earth Explorer 9 mission. In December 2017 FORUM was approved for Phase-A studies. The core FORUM instrument is a FT spectrometer measuring, for the first time from space, the outgoing spectral radiance from the FAR to the MID infrared spectral regions, namely, from 100 to 1600 cm⁻¹. Far-infrared (FIR) spectral measurements are extremely important because approximately 40% of the outgoing Earth’s radiation falls in this region.

The figure on the right shows a simulated spectrum at the top of the atmosphere. FORUM and IASI – NG spectral ranges are also indicated. The main target parameters that will be retrieved from FORUM measurements are the H₂O profile and cloud parameters. However, it will be possible to retrieve also profiles of other gases, such as: O₃, CH₄, N₂O, HNO₃, etc. In this work we characterize the performance of the retrieval of these secondary gases from FORUM synthetic observations.

Impact of FIR observations

FORUM will allow obtaining:
- Improved estimate of the outgoing long-wave broadband flux.
- Better estimate of the emissivity of frozen surfaces within the FIR region.
- Quantification of long-term effects of ongoing changes in greenhouse gases such as CO₂, CH₄, N₂O, and O₃ on the radiation field.
- A full verification of the FIR water vapour spectrometry.
- Improved water vapour retrievals in the upper-troposphere as compared to retrievals from mid-latitude measurements.
- FORUM measurements will contribute to improve cloud parameterizations (needed to climate and NWP models) and to characterize radiative properties of ice clouds in the FIR.

Forward and inverse modeling

For generation of synthetic FORUM measurements and test retrievals we use the KLIMA forward/retrieval model [Laurenza et al., 2014].

Impact of observing scenario: The KLIMA algorithm has been applied to FIR spectral observations acquired by the REFIR instrument during a stratospheric balloon flight from Teresina (Brazil) in 2005 [Palchetti et al., 2006].

The KLIMA forward model has been validated against state of the art radiative transfer codes such as LBLRTM (see plot on the right).

Noise-induced retrieval error

Noise retrieval errors vs altitude, for various clear-sky observational scenarios as indicated in the plot’s key. The plots refer (from top-left to bottom-right) to O₃, N₂O, HNO₃, and CH₄ retrievals for seven clear sky scenarios.

The rightmost-bottom plot shows the errors obtained for OCS-12 and CFC-12 retrievals in a mid-altitude scenario, as compared to the errors of other species.

Averaging Kernels (AKs)

AKs and vertical resolution vs altitude for the retrieval of D₃ in a mid-altitude atmosphere and clear-sky conditions.

Summary table of performances

<table>
<thead>
<tr>
<th>Species</th>
<th>Min. err. (%)</th>
<th>Min. Vres. (km)</th>
<th>Height (km)</th>
<th>NREF</th>
<th>TC err (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₃</td>
<td>15 - 20</td>
<td>7 - 10</td>
<td>15 - 20</td>
<td>4</td>
<td>2 - 3</td>
</tr>
<tr>
<td>CH₄ and N₂O</td>
<td>15 - 20</td>
<td>9 - 10</td>
<td>15 - 20</td>
<td>2.5 - 3.5</td>
<td>5 - 15</td>
</tr>
<tr>
<td>HNO₃</td>
<td>15 - 20</td>
<td>13 - 15</td>
<td>9 - 11</td>
<td>1</td>
<td>5 - 35</td>
</tr>
<tr>
<td>CFC-11</td>
<td>50</td>
<td>18 - 25</td>
<td>15 - 25</td>
<td>1</td>
<td>5 - 50</td>
</tr>
</tbody>
</table>

We also tried to retrieve CO from the FIR simulated observations of FORUM, however the CO features are very weak as compared to the measurement noise. We found that the information gain on the gas is negligibly small.

Conclusions

- We find that, in general, the altitude regions with the largest AK peaks, corresponding also to a finer vertical resolution and smaller retrieval errors, are located close to the maximum concentration of the examined gas.
- The obtained errors do not depend dramatically on the considered measurement scenario, except for the fact that in extreme Polar Winter conditions, the colder temperatures and snow/snow accumulation shift the retrievable altitudes maximum of information on the considered gases.
- The table on the left summarizes the average values of minimal retrieval error, finest vertical resolution, altitude range for these minima, number of degrees of freedom of the retrieval and error on the total vertical gas column.
- The possibility to retrieve CO from FORUM individual measurements was also investigated, however we could not observe CO spectral lines in the FIR to such a small extent compared to the measurement noise that a meaningful retrieval is not possible.

References


Acknowledgements

FORUM related studies are supported by projects of the Italian Space Agency (ASI) and of the European Space Agency (ESA).