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Background

𝐦𝐢𝐧 ‖𝒚 − 𝑭 𝒙 ‖

Direct problem: from the atmospheric status vector x find the simulated spectrum 𝐲 =
𝐅 𝐱 , with F known as forward model.

Inverse problem: from the measured spectrum y find the parameter vector x (retrieval 
vector) which minimizes 𝒚 − 𝑭 𝒙 .



Retrieval – classical approach

 Find the atmospheric parameters 𝐱 (surface temperature, temperature, water vapor, ozone, surface 
spectral emissivity, clouds parameters) that best reconstruct the measured spectrum 𝐲.

VERY ILL-CONDITIONED PROBLEM

 The problem is formulated as a Bayesian inference problem, solved using the OPTIMAL ESTIMATION 
METHOD1: 
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where  𝐒𝐲
−1 = 𝐋𝐲

T𝐋𝐲 and 𝐒a
−1 = 𝐋a

T𝐋a are the inverses of the covariance matrices of the measurements 𝐲 and 
the a priori information 𝒙𝑎, respectively.

 The minimization is carried out using Gauss Newton + Levenberg-Marquardt technique.



Motivation

Classical retrieval methods rely on explicit forward modeling and iterative minimization (e.g., Optimal 
Estimation).

These approaches are computationally expensive especially under cloudy-sky conditions.
 

Machine learning methods can learn the non-linear relationships between radiances and atmospheric 
parameters directly from data.

Goal: develop a fast, data-driven framework capable of real-time all-sky retrieval, with accurate scene 
recognition and cloud characterization → Latent Twins Framework

Such methods depend on large, representative training datasets, which must capture the variability of 
atmospheric and cloud conditions.



Database

Data collected at 12:00 UTC, covering entire globe on a 2°×2° lat-lon grid, January and July 2021.

Total cases: 𝑚 = 31,862 → Training set: 𝑚1 = 27,000 (~85%), uniformly sampled from {1 … 𝑚} .
                                                           → Test set: 𝑚2 = 4,862 (~15%), complementary subset.



Database pre-processing

 Normalization:
 Min–max scaling of features to [0,1] based on training set.
 Test set normalized using same min/max to avoid data leakage.

 Vertical profile standardization:
 Earth’s surface altitude varies → number of vertical points differs per case.
 Normalize vertical pressures to [0, 1], interpolate each profile on N = 60 equally spaced points → uniform input size 
while preserving case-specific pressure ranges.

Retrieval variables:  𝐱 = T0, 𝐓, 𝐰vap, 𝐨, 𝐞, 𝐜liq, 𝐜ice, 𝐫liq, 𝐫ice
T

∈ R722.

Input variables:          𝐲 = ylon, ylat, dloc, hloc, 𝐩, 𝐬 T ∈ R4233.

- 𝑇0, 𝑦𝑙𝑜𝑛, 𝑦𝑙𝑎𝑡, 𝑑𝑙𝑜𝑐, ℎ𝑙𝑜𝑐, 𝜏𝑙𝑖𝑞 , 𝜏𝑖𝑐𝑒 ∈ 𝑅,

- 𝑻, 𝒘𝑣𝑎𝑝, 𝐨, 𝐜liq, 𝐜ice, 𝐫liq, 𝐫ice, 𝐩 ∈ 𝑅60 ,

- 𝒆 ∈ 𝑅301 (from 100 cm-1 to 1600.5 cm-1 with step size 5 cm-1), 

- 𝒔 ∈ 𝑅4169 (from 100 cm-1 to 1600.5 cm-1 with step size 0.36 cm-1).



Autoencoders

Neural network that learns to map its input to the output.

Two parts:

Encoder: 𝐳𝐱 = 𝐞𝐱 𝐱 .
Decoder: 𝐱′ = 𝐝𝐱 𝐳𝐱 .

Simply learning 𝐝𝐱 𝐞𝐱 𝐱 = 𝐱 is not effective.

Key Idea:

The model is restricted to approximate reconstruction.

Forces the model to prioritize important features of the data.

Traditionally used for dimensionality reduction or feature learning.

Special case of feedforward networks → same training techniques.



Latent Twins framework

𝒂𝒙:      [722] → [617]      → [512] → [512]   → [617]   → [722]

𝒂𝒚:     [4233] → [2372]   → [512] → [512]  → [2372] → [4233]

𝒔, 𝒔+:             [512] → [512] 

* ReLU (Rectified Linear Unit) function:  𝐟 𝐱 = 𝐦𝐚𝐱(𝟎, 𝐱)→ it introduces non 
linearity

𝒂𝒙 𝒂𝒚
(input dim + latent dim)/2

Linear + ReLU*

Linear



Surrogate inversion

𝒇+ 𝐲 ≈ (𝐝𝐱 ∘ 𝒔+ ∘ 𝒆𝒚)(𝒚)



Training 

Joint learning on GPU
Batch learning (batch_size = 512)
Epochs (10k)
ADAM (ADAptive Moment Estimation) Optimization
Learnig rate: 𝟏𝟎−𝟑 + 𝐬𝐜𝐡𝐞𝐝𝐮𝐥𝐞𝐫

Loss 1: L𝐱𝐱 =
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TOTAL LOSS: L = 𝛾xxL𝐱𝐱 + 𝛾yyL𝐲𝐲 + 𝛾xyL𝐱𝐲 + 𝛾yxL𝐲𝐱, with 𝛾xx = 𝛾yy = 𝛾yx = 1 and 𝛾xy = 0.5



Avg results 

Solid line: MBE
Dashed lines: MBE ± MAE 

*Surface temperature:
MBE = 0.028K 
MAE = 3.173K.



Results: case 6



Training II

Retrieved 𝐜liq, 𝐜ice, 𝐫liq, 𝐫ice are not physically consistent→ second training phase! Independent, autoencoder & 
latent networks frozen.

4 Feedforward neural networks (MLP, fully-connected):                                             [4] → [16] → [8]   → [1]

LINEAR + SOFTPLUS

* SoftPlus function:  𝐟 𝐱 = 𝐥𝐧(𝟏 + 𝐞𝐱) → it avoids discontinuity

INPUT: c𝑖 inp
or ri inp

, p𝒊, T𝒊, wvap
i OUTPUT: ci new

or ri new

Training: entire training set; Inference: applied only on inconsistent points.
Loss function:

    
Batch size: 512, Adam optimizer.
Results:    Loss: 5.6 → 0.05 
Inconsistent points: 401,681 (train), 71,048 (test) → All inconsistencies corrected



Results: case 6 

BEFORE AFTER



Computational times

Training the first 4 models → it depends on the epochs and laptops → some hours
Training the last 4 networks → it depends on the epochs and laptops → some 
minutes

Testing  → Total time taken for all predictions (4862): 2.06 seconds*
                            Average time per batch (512): 0.21 seconds*

                                                                                                                             * standard laptop



Optical depth reconstruction 

τice =
3

2
෍

i

Qext
i cice

i ρair

rice
i ρice

Δzi,

with i layer, ρair and ρice air and ice density, respectively, Δzi geometric thickness and Qext
i . The same for 𝜏𝑙𝑖𝑞.

* Logarithmic scale with a unit offset

MBE = 3.40 
MAE = 20.12



Scene Classification Performance

τ = τliq + τice used to assess the scene classification between clear and cloudy conditions.

CATEGORY DEFINITION ACCURACY

Binary: Clear / Cloudy Clear if 𝜏 ≤ 0.03 , Cloudy if 𝜏 > 0.03 94.82 %

Three classes: Clear / Thin / Thick Clear: 𝜏 ≤ 0.03 • Thin: 0.03 < 𝜏 ≤ 1• Thick: 𝜏 > 1 82.91 %



Cloud Position Accuracy:
 Fourier Insights

Goal: assess whether the network captures the vertical structure and position of clouds

Method: compute Fourier sine-series coefficients 𝑏𝑘 , 𝑘 = 1 , … , 10 of true and predicted profiles:

𝑏𝑘 ≈
2
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Normalization:                 𝒃 = [𝒃𝟏, 𝒃𝟐, … , 𝒃𝑲],    ෩𝒃 =
𝒃

𝒎𝒂𝒙𝒊 |𝒃𝒊|

Cosine similarity: for each cloud variable and case, compute

𝒄𝒐𝒔𝒔𝒊𝒎 =
෩𝒃𝒕𝒓𝒖𝒆෩𝒃𝒑𝒓𝒆𝒅

෩𝒃𝒕𝒓𝒖𝒆 ‖෩𝒃𝒑𝒓𝒆𝒅‖

Var 𝒄𝒐𝒔𝒔𝒊𝒎

𝑐𝑖𝑐𝑒 0.67

𝑟𝑖𝑐𝑒 0.67

𝑐𝑙𝑖𝑞 0.73

𝑟𝑙𝑖𝑞 0.73



Take-home messages

Latent-twin architecture successfully reconstructs atmospheric profiles and cloud properties.

Additional neural networks and physical constraints improve the cloud-property retrieval.

Optical depth retrieval enables accurate scene recognition:
~95% accuracy in distinguishing clear vs. cloudy scenes
~83% accuracy in identifying thick / thin / clear classes

Retrievals are instantaneous, suitable for real-time applications.

Fourier analysis confirms that the model correctly captures the vertical cloud position on average.

Profile amplitude retrieval still requires further improvement.

Ongoing collaboration with Michele Martinazzo (University of Bologna), Chiara Zugarini (University of Florence), 
and Marco Menarini (University of Bologna) aims to apply this architecture to clear-sky retrievals using real IASI 
measurements and and to perform a comprehensive error and robustness analysis of the method.
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